
1/42

Hyperbolic Learning in Action

Non-Euclidean Geometry

Lionetti
Simone

Gonzalez-Jimenez
Alvaro

Friday 14th February, 2025



2/42

Hyperbolic Learning in Action

Website and material:

https://digital-dermatology.github.io/hyperbolic-learning-tutorial

https://digital-dermatology.github.io/hyperbolic-learning-tutorial
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Motivation
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Euclidean geometry

Humans perceive the world as three-dimensional Euclidean space.

Width, height, and depth
are natural concepts.
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Jorge Stolfi, Public domain,
via Wikimedia commons

Computer linear algebra
assumes Euclidean space.
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Most Machine Learning is
based on Euclidean space.

https://commons.wikimedia.org/wiki/File:Coord_system_CA_0.svg
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Spherical geometry

Some problems are naturally treated on the sphere.

Earth surface

U.S. Government, Public domain,
via Wikimedia commons

Celestial sphere

ChristianReady, CC BY-SA 4.0,
via Wikimedia commons

Fisheye camera

Spike, CC BY-SA 4.0,
via Wikimedia commons

More subtly, cosine distance is often used in embedding spaces.

https://commons.wikimedia.org/wiki/File:Globe_Atlantic.svg
https://creativecommons.org/licenses/by-sa/4.0
https://commons.wikimedia.org/wiki/File:Celestial_Sphere_-_Full_no_figures.png
https://creativecommons.org/licenses/by-sa/4.0
https://commons.wikimedia.org/wiki/File:Pisa_Baptistery_interior_fisheye_view_01.jpg
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Hyperbolic geometry

Hyperbolic geometry
is less common in nature...

Toby Hudson, CC BY-SA 3.0,
via Wikimedia commons

...but common in data!

[Schumann et al 2021]
CC BY-SA 4.0

https://creativecommons.org/licenses/by-sa/3.0
https://commons.wikimedia.org/wiki/File:Folded_Coral_Flynn_Reef.jpg
https://arxiv.org/abs/2105.02317
https://creativecommons.org/licenses/by-sa/4.0
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Hierarchies

Tree structures with splitting at each level:

The number of leaves grows exponentially
with the number of levels.

This is often the structure of:

▶ Classification categories

▶ Images and their parts

▶ Words and their relations

▶ Tree graphs, by definition

▶ . . .

Ubiquitous in Machine Learning!
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Program for 45 minutes

1. Motivation

2. Curvature

2.1 Construction
2.2 Properties

3. Hyperbolic geometry

3.1 Lorentz hyperboloid model
3.2 Poincaré ball model
3.3 Isometries

Inspired by the tutorial on
Hyperbolic Representation Learning at ECCV 2022
by Mettes, Ghadimi Athig, Keller-Ressel, Gu, Yeung

https://hyperbolic-representation-learning.readthedocs.io/en/latest/
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Backgrounds

What is your background?
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Curvature
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Axioms of Euclidean geometry

Euclid’s Elements (roughly 300 BC):

1. Unique line segment through two distinct points.

2. Line segments may be indefinitely extended.

3. Unique circle of given center and radius.

4. All right angles are congruent.

5. Given a line and a point not on it,
there is a unique line through the given point
that does not intersect the given line.

Concepts:

1. Geodesic segments

2. Geodesic lines

3. Distance

4. Orthogonality

5. (Flatness)
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The sphere

1. The shortest path is in the plane with the two points and the center.

2. Great circles are geodesics, i.e. straight lines.

3. Same distance curves are “parallels”.

4. Orthogonal plane great circles.

5. All great circles intersect in two points!
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Euclidean distance between geodesics

An important characteristic of a geometry is the distance between geodesics crossing
at a given angle θ, at a distance r from their intersection.

For the Euclidean plane

sθ = 2r sin
θ

2
,

∂sθ
∂θ

∣∣∣∣
θ=0

= r.
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Spherical distance between geodesics

For the sphere

sθ = 2R arcsin

(
sin

r

R
sin

θ

2

)
,

∂sθ
∂θ

∣∣∣∣
θ=0

= R sin
r

R
.

Note that for R → +∞

∂sθ
∂θ

∣∣∣∣
θ=0

∼ r,

the Euclidean case is recovered.
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Surface element

Volume element

▶ Euclidean

ds2 = dr2 + r2dθ2

▶ Spherical

ds2 = dr2 +R2 sin2
r

R
dθ2

Define:
ds2 = dr2 + [f(r)]2dθ2
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Negative curvature, imaginary radius

Define curvature as

κ := R−2.

f(r) =
1√
κ
sin r

√
κ,


Spherical κ > 0

Euclidean κ → 0

? κ < 0

.

Note κ < 0 means R = i|R|, rewrite

f(r) = − i√
−κ

sin
(
−ir

√
−κ

)
i sin(ix) = sinhx

=
1√
−κ

sinh
(
r
√
−κ

)



17/42

The many faces of curvature

▶ Intrinsic: seen from within the space

▶ Volume growth
▶ Parallel postulate
▶ Grid distortion
▶ Parallel transport
▶ Sum of internal angles

▶ Extrinsic: seen from a larger space

▶ Principal curvatures
▶ Gaussian curvature

▶ Local: at a given point in space

▶ Global: in a given region of space

Modified from Mysid, CC BY-SA 3.0,
via Wikimedia commons

https://creativecommons.org/licenses/by-sa/3.0
https://commons.wikimedia.org/wiki/File:Spacetime_lattice_analogy.svg
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Space growth
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Parallel postulate
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Grid distortion
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Parallel transport
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Parallel transport
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Triangles

Sum of internal angles
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Principal curvatures
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Principal curvatures are defined by the minimum and maximum radius.
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Gaussian curvature

Gaussian curvature is the determinant of extrinsic curvatures,
it coincides with intrinsic curvature.

κ > 0 κ = 0 κ < 0
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https://commons.wikimedia.org/wiki/File:Parabol-el-zy-hy-s.svg
https://creativecommons.org/licenses/by-sa/4.0
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Hyperbolic space
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Definition and history

Hyperbolic space is the space of constant negative curvature.

▶ Developed in the 19th century
by Gauss, Lobachevsky, and Bolyai.

▶ Is the geometry of special relativity.

▶ Inspired art by Maurits C. Escher
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Hilbert’s theorem

Bad piece of news:

There is no way to completely represent
the hyperbolic space of dimension n

in the Euclidean space of dimension n+ 1.

The best we can do is the tractoid.

This is why we have to resort to models.

Leonid 2, CC BY-SA 3.0,
via Wikimedia commons

https://creativecommons.org/licenses/by-sa/3.0
https://commons.wikimedia.org/wiki/File:PseudoSphere.svg
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Models of hyperbolic geometry

▶ Hyperboloid or Lorentz model

▶ Poincaré disc/ball

▶ Beltrami–Klein model

▶ Poincaré half-plane

▶ . . .

All equivalent, but depending on the operation some may be more convenient.
A conformal model is one that preserves angles.
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Minkowski space

Euclidean space Rn with an additional dimension

x = (x0, x1, . . . , xn) = (x0, x⃗)

x0 and x⃗ are called time and space components

Introduce the pseudo-scalar product

⟨x, y⟩L = x0y0 − (x1y1 + · · ·+ xnyn)

= x0y0 − x⃗ · y⃗.

This is not positive definite!

Example: x2 = 0 when x20 = x21 + x22

Time

Space
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Lorentz hyperboloid model

The Lorentz hyperboloid model is the
manifold

x2 = x20 − x⃗2 = −1/κ with x0 > 0,

so x0 is fully determined by x⃗

x0 =
√
x⃗2 − 1/κ.

An appropriate definition of distance is
needed.

Ag2gaeh, CC BY-SA 4.0,
via Wikimedia commons

https://creativecommons.org/licenses/by-sa/4.0
https://commons.wikimedia.org/wiki/File:Hyperboloid-2s.svg
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Distance in the sphere

For the n-dimensional sphere within Rn+1,
choose a meridian from the north pole

pr =

(
R cos(r/R)

v̂R sin(r/R)

)
, p0 =

(
R

0⃗

)
.

The distance r can be rewritten with the
scalar product

⟨p0, pr⟩ = R2 cos
r

R
,

r = R arccos
⟨p(0), p(r)⟩

R2
.
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Distance in the Lorentz hyperboloid

For the n-dimensional sphere within Rn+1,
choose a meridian from the north pole

pr =

(
R cos(r/R)

v̂R sin(r/R)

)
, p0 =

(
R

0⃗

)
.

The distance r can be rewritten with the
scalar product

⟨p0, pr⟩ = R2 cos
r

R
,

r = R arccos
⟨p(0), p(r)⟩

R2
.

For the n-dimensional Lorentz hyperboloid
in (1, n) Minkowski space

pr =

( 1√
−κ

cosh
(
r
√
−κ

)
v̂√
−κ

sinh
(
r
√
−κ

)), p0 = ( 1√
−κ

0⃗

)
.

The distance r can be rewritten with the
scalar product

⟨p0, pr⟩L =
1

−κ
cosh

(
r
√
−κ

)
,

r =
1√
−κ

cosh−1(−κ⟨p0, pr⟩L).
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Exponential map

Let v = (0, v̂) and note that ⟨p0, v⟩L = 0, so v is an element of the tangent space.
A more general geodesic at a point p0 in direction v reads

pr = expp0(r, v) = cosh
(
r
√
−κ

)
p0 + sinh

(
r
√
−κ

)
v/

√
−κ,

and is the intersection of a Minkowski hyperplane with the hyperboloid.

This is the exponential map, which lifts points from the tangent space Tx(0) ∼ Rn to
the hyperboloid of dimension n.

Its inverse, logarithmic map, projects points from the hyperboloid to the tangent space.

The name comes from combining many infinitesimal movements in the same direction.
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From Lorentz hyperboloid to Poincaré disk

The Poincaré model is a projection of the Lorentz
hyperboloid model to the unit disk/ball via the
point (−1/

√
−κ, 0⃗), and vice versa.

pr,λ = λpr + (1− λ)

(
−1/

√
−κ

0⃗

)
=

1√
−κ

(
λ cosh

(
r
√
−κ

)
− (1− λ)

v̂λ sinh
(
r
√
−κ

) )
!
=

(
0

q

)
,
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Poincaré disk: algebra

A parametrization then is

q =
v̂√
−κ

sinh
(
r
√
−κ

)
cosh

(
r
√
−κ

)
− 1

=
v̂√
−κ

tanh
r
√
−κ

2
,

which gives |q| <
√
−κ, a disk/ball without shell.

The distance between two points in the Poincaré model is given by

d(p, q) =
1√
−κ

cosh−1

(
1 +

2|p− q|2

(1− |p|2)(1− |q|2)

)
.



37/42

Poincaré disk: graphics

Geodesics are arcs of circles that

meet the boundary at right angles.

Areas and distances

appear smaller at the boundary.
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The origin

Is the origin special
in the Lorentz hyperboloid
and in the Poincaré ball?
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Hyperbolic isometries

A hyperbolic translation τx moves 0 to x keeping all pairwise distances constant.
Other names: Lorentz boost, Möbius transformation, gyrovectorspace addition
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Formulas for hyperbolic translations

Lorentz hyperboloid (Lorentz boost)

τx(y) = Λxy where Λx =

(
x0 x⃗T

x⃗
√
I+ x⃗x⃗T

)
(1)

Poincaré ball (gyrovectorspace addition)

τp(q) = p⊕ q =
(1− |p|2)q + (1 + 2p · q + |q|2)p

1 + 2p · q + |p|2|q|2

Note p⊕ q ̸= q ⊕ p.
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Gyrovectorspace calculus

Gyrovectorspace addition:

p⊕ q =
(1− |p|2)q + (1 + 2p · q + |q|2)p

1 + 2p · q + |p|2|q|2

Gyrovectorspace scalar product:

r ⊗ p = p⊗ r = tanh
(
r tanh−1 |p|

) p

|p|

Geodesic arc from p to q:

λ(t) = p⊕ ([(−p)⊕ q]⊗ t), t ∈ [0, 1]

This is similar to the Euclidean formula λ(t) = p+ (q − p)t.
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Embedding Hierarchies
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The trouble with embedding hierarchies

Hierarchies grow exponenitally in depth, Euclidean spaces grows linearly with norm.
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Poincaré Embeddings

Nickel and Kiela, Poincaré Embeddings for Learning Hierarchical Representations
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Optimizing Poincaré Embeddings

Nodes:
S = {xi}ni=1

Parent-child relations:
D = {(u, v)}

Non-Parent-child relations:
N (u) = {v′| (u, v′) /∈ D} ∪ {v}

Hyperbolic representation of nodes: Θ = {θi}ni=1

Θ′ ← argminL(Θ) s.t.∀θi ∈ Θ : ∥θi∥ < 1 (1)

Pull parent-child nodes, push others.

L(Θ) =
∑

(u,v)∈D
log

e−d(u,v)∑
v′∈N (u) e

−d(u,v′)
(2)

d(u,v) = arcosh

1 + 2
∥u− v∥2(

1− ∥u∥2
)(

1− ∥v∥2
)
 (3)
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Optimizing Poincaré Embeddings

θt+1 = ℜθt (−ηt∇RL (θt)) (4)

Optimize node embeddings with Riemmanian gradient descent.

θt+1 ← proj

θt − ηt

(
1− ∥θt∥2

)2

4
∇E

 (5)

Riemmanian gradient descent = Standard gradient + scaling + projection.
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Poincaré Embeddings
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Improving Poincaré Embeddings

Hyperbolic entailment
cones.

Multi-relational Poincaré
embeddings.

Modelling heterogeneous
hierarchies.
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Hyperbolic Image Embeddings

Khrulkov et al., Hyperbolic Image Embeddings
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Convolutional Networks with Hyperbolic Embeddings

Guo et al., “Clipped Hyperbolic Classifiers Are Super-Hyperbolic Classifiers”
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Zero-Shot Generalization
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Hyperbolic Zero-Shot Visual Embedding Learning

If labels are hierarchical, does a hyperbolic embedding eneable zero-shot generalization?
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Hyperbolic Zero-Shot Visual Embedding Learning

Liu et al., “Hyperbolic Visual Embedding Learning for Zero-Shot Recognition”
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Hyperbolic Zero-Shot Visual Embedding Learning

If prior knowledge is a hierarchy then use hyperbolic geometry for zero-shot learning.

Liu et al., “Hyperbolic Visual Embedding Learning for Zero-Shot Recognition”
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Hyperbolic Image-Text Representations

Image
Encoder

Text
Encoder

Image
Encoder

Text
Encoder

Linear 
Projection

Linear 
Projection

Linear 
Projection

Linear 
Projection

L2 normalize L2 normalize expmO expmO

Contrastive Loss
(cosine similarity)

Contrastive Loss
(neg. Lorentzian distance)

+ Entailment Loss

αimg αtxt

Images Text Images Text

CLIP MERU

Desai et al., “Hyperbolic Image-text Representations”
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Entailment Cones

O

x

y

loss = 0

ext(x, y) aper(x)loss = –

(text)

(image)

Top-down view ⇓

Desai et al., “Hyperbolic Image-text Representations”
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MERU

Desai et al., “Hyperbolic Image-text Representations”
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MERU

Desai et al., “Hyperbolic Image-text Representations”
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Compositional Entailment Learning

An image is not only described by a sentence but is itself a composition of multiple
object boxes, each with their own textual description

Apple cider cocktail infused 
with fresh herbs 

Fresh herbs used to cook

Mineral water with fresh herbs in a 

glass carafe on a garden table

Image, I

Image
Local box, Ibox

Text, T

Text of 
Local box, Tbox

Pal et al., “Compositional Entailment Learning for Hyperbolic Vision-Language Models”
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Compositional Entailment Learning

Pal et al., “Compositional Entailment Learning for Hyperbolic Vision-Language Models”
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Compositional Entailment Learning

Pal et al., “Compositional Entailment Learning for Hyperbolic Vision-Language Models”
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Robustness and Uncertainty
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Hyperbolic Segmentation

GhadimiAtigh et al., Hyperbolic Image Segmentation
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Uncertainty and boundary information for free

GhadimiAtigh et al., Hyperbolic Image Segmentation
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How to exploit robustness properties?

▶ Learn in-distribution representations
promoting low variations and high
separation.

▶ Hyperbolic geometry offers more space
than Euclidean!

Gonzalez-Jimenez et al., Hyperbolic Metric Learning for Visual Outlier Detection
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Hyperbolic Outlier Detection

Score
0

10000

20000

F
re

q
u

en
cy

CIFAR-10

Textures

Score
F

re
q
u

en
cy

CIFAR-10

Places365

−22 −20 −18 −16

Score

0

10000

20000

F
re

q
u

en
cy

CIFAR-10

SVHN

−22 −20 −18 −16

Score

F
re

q
u

en
cy

CIFAR-10

MNIST

64 16 3 2

Dimensions

20

40

60

80

100

F
P

R
@

95

With Sampling

W/o Sampling

NPOS

Gonzalez-Jimenez et al., Hyperbolic Metric Learning for Visual Outlier Detection
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Fully Hyperbolic Networks
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Extend Hyperbolic Space for the entire network

Mapping back and forth between hyperbolic and Euclidean manifolds.
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Move Everything to Hyperbolic Space

The current methods depend on the tangent space for several operations and the
frequent back and forth mapping is both expensive and prone to a loss of data.
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Hyperbolic Network ++

Poincaré Ball

y = expc0 (W logc0(x))⊕c b (6)

Hyperbolic Neural Networks++

y = Fc(x;Z, r) = w
(
1 +

√
1 + c∥w∥2

)−1

(7)

Shimizu, Mukuta, and Harada, Hyperbolic Neural Networks++
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Poincare ResNet

▶ Extend Linear Layer from Hyperbolic
Neural Network++ for Convolutions.

▶ Poincare midpoint batch normalization
for faster and equally effective
alternative to Frechet Mean.

▶ Poincare Resnets are (i) more robust
to out-of-distribution samples, (ii)
more robust to adversarial attacks and
(iii) complementary to Euclidean
networks.

Spengler, Berkhout, and Mettes, Poincaré ResNet
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Weaknesses
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Gradients Vanishing

Guo et al., “Clipped Hyperbolic Classifiers Are Super-Hyperbolic Classifiers”
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Numerical Instability

▶ It will sometimes lead to catastrophic NaN problems, encountering
unrepresentable values in floating point arithmetic.

▶ Under the 64 bit arithmetic system, the Poincare ball has a relatively larger
capacity than the Lorentz model for correctly representing points.

▶ Lorentz model is superior to the Poincare ball from the perspective of
optimization.

Mishne et al., “The Numerical Stability of Hyperbolic Representation Learning”
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Geomstats

▶ An extensive library for differential
geometry, supporting a wide range of
manifolds and operations.

▶ Offers thorough documentation and
tutorials, which help users get started
quickly.

▶ Well-maintained and actively
developed with frequent updates.

▶ Lacks in-depth focus on hyperbolic
space, leading to missing important
features and models.
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Geoopt

▶ Started as just for fun paper implementation and grow to a Python Package. 1

▶ Support various hyperbolic models and operations.

▶ The most widely used library in literature for manifold-based optimization.

▶ Lacks active maintenance, with outdated implementations for key operations such
as sinh, cosh, etc.

▶ Performance issues and steep learning curve for beginners.

1https://www.youtube.com/watch?v=6VZ0Gk4QMME
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HypLL

▶ A recent library with a strong focus on hyperbolic space.

▶ Provides support for hyperbolic layers and operations, designed like PyTorch
(hypll.nn, hypll.optim).

▶ User-friendly for creating fully hyperbolic networks.

▶ Only support Poincaré Ball, other models will be implemented.
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Hypll Overview

1 from hypll.tensors import TangentTensor

2 from hypll.optim import RiemannianAdam

3 from hypll.manifolds.poincare_ball import Curvature , PoincareBall

4 from models import hyperbolic_model

5 ...

6
7 manifold = PoincareBall(c=Curvature(value =0.1, requires_grad=True))

8 model = hyperbolic_model(manifold=manifold)

9
10 optimizer = RiemannianAdam(model.parameters (), lr =0.001)

11 criterion = nn.CrossEntropyLoss ()

12
13 for epoch in range (100):

14 running_loss = 0.0

15 for i, data in enumerate(trainloader , 0):

16 inputs , labels = data [0].to(device), data [1].to(device)

17
18 tangents = TangentTensor(data=inputs , man_dim=1, manifold=manifold)

19 manifold_inputs = manifold.expmap(tangents)

20
21 optimizer.zero_grad ()

22 outputs = model(manifold_inputs)

23 loss = criterion(outputs.tensor , labels)

24 loss.backward ()

25 optimizer.step()

26 ...
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Library Advantages Disadvantages

Geomstats
Extensive support for differential geometry Not focus for hyperbolic learning
Well maintained and documented Missing operations and features

Geoopt
Support many models (Lorentz, Hyperboloid, Klein, etc.) Slow performance (outdated code)
Rich in hyperbolic operations Not maintained
Widely used in hyperbolic papers Difficult for beginners

Hypll
Follows PyTorch style Only Poincare model is supported
Support hyperbolic layers for Fully Hyperbolic Networks
User-friendly
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Practical Session

The code is at

https://github.com/Digital-Dermatology/hyperbolic-learning-tutorial-code

https://github.com/Digital-Dermatology/hyperbolic-learning-tutorial-code
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Discussion
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Learnings from the practical session

Tell us what you have discovered or learned from the practical session!
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Performance comparison
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Euclidean, epoch 0
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Euclidean, epoch 1
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Euclidean, epoch 10
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Euclidean, epoch 100
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Last hyperbolic, epoch 0
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Last hyperbolic, epoch 1
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Last hyperbolic, epoch 10
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Last hyperbolic, epoch 100
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Fully hyperbolic, epoch 0
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Fully hyperbolic, epoch 1
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Fully hyperbolic, epoch 10
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Fully hyperbolic, epoch 100
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Recap
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Why should we care about Hyperbolic Learning

Visual Hierarchies Semantic Hierarchies
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Why should we care about Hyperbolic Learning

Zero-Shot Learning

Robustness
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Future Potential

▶ Fully hyperbolic CNNs, Transformers, etc.

▶ Stable learning on any and all hyperbolic models.

▶ Fast forward and backward computation.

▶ Adjust curvature to data and problem.

▶ What model is suitable for data and problem?

▶ Large-scale hyperbolic learning.
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Thank you

https://forms.gle/KdhQPt6e9NwKUkfGA


