

Hyperbolic Learning in Action

Non-Euclidean Geometry

Lionetti Simone

Gonzalez-Jimenez Alvaro

Friday 14th February, 2025

Hyperbolic Learning in Action

Website and material:

https://digital-dermatology.github.io/hyperbolic-learning-tutorial

Motivation

Euclidean geometry

Humans perceive the world as three-dimensional Euclidean space.

Width, height, and depth are natural concepts.

Computer linear algebra assumes Euclidean space.

a_{11}	a_{12}	a_{13}		a_{1n}	$\begin{bmatrix} x_1 \end{bmatrix}$
a_{21}	a_{22}	a_{23}		a_{2n}	x_2
a_{31}	a_{32}	a_{33}		a_{3n}	x_3
:	÷	÷	γ_{i_1}	:	:
a_{m1}	a_{m2}	a_{m3}		a_{mn}	x_n

Most Machine Learning is based on Euclidean space.

Jorge Stolfi, Public domain, via Wikimedia commons

Spherical geometry

Some problems are naturally treated on the sphere.

Earth surface

U.S. Government, Public domain, via Wikimedia commons

Celestial sphere

ChristianReady, CC BY-SA 4.0, via Wikimedia commons

Fisheye camera

Spike, CC BY-SA 4.0, via Wikimedia commons

More subtly, cosine distance is often used in embedding spaces.

Hyperbolic geometry

Hyperbolic geometry is less common in nature...

Toby Hudson, CC BY-SA 3.0, via Wikimedia commons

...but common in data!

Hierarchies

Tree structures with splitting at each level:

The number of leaves grows *exponentially* with the number of levels.

This is often the structure of:

- Classification categories
- Images and their parts
- Words and their relations
- ► Tree graphs, by definition

► ...

Ubiquitous in Machine Learning!

Program for 45 minutes

1. Motivation

2. Curvature

- 2.1 Construction
- 2.2 Properties
- 3. Hyperbolic geometry
 - 3.1 Lorentz hyperboloid model
 - 3.2 Poincaré ball model
 - 3.3 Isometries

Inspired by the tutorial on Hyperbolic Representation Learning at ECCV 2022 by Mettes, Ghadimi Athig, Keller-Ressel, Gu, Yeung

Backgrounds

What is your background?

Curvature

Axioms of Euclidean geometry

Euclid's *Elements* (roughly 300 BC):

- 1. Unique line segment through two distinct points.
- 2. Line segments may be indefinitely extended.
- 3. Unique circle of given center and radius.
- 4. All right angles are congruent.
- 5. Given a line and a point not on it, there is a unique line through the given point that does not intersect the given line.

Axioms of Euclidean geometry

Euclid's *Elements* (roughly 300 BC):

- 1. Unique line segment through two distinct points.
- 2. Line segments may be indefinitely extended.
- 3. Unique circle of given center and radius.
- 4. All right angles are congruent.
- 5. Given a line and a point not on it, there is a unique line through the given point that does not intersect the given line.

Concepts:

- 1. Geodesic segments
- 2. Geodesic lines
- 3. Distance
- 4. Orthogonality
- 5. (Flatness)

The sphere

- 1. The shortest path is in the plane with the two points and the center.
- 2. Great circles are geodesics, i.e. straight lines.
- 3. Same distance curves are "parallels".
- 4. Orthogonal plane great circles.
- 5. All great circles intersect in two points!

Euclidean distance between geodesics

An important characteristic of a geometry is the distance between geodesics crossing at a given angle θ , at a distance r from their intersection.

For the Euclidean plane

$$s_{\theta} = 2r \sin \frac{\theta}{2},$$
$$\frac{\partial s_{\theta}}{\partial \theta}\Big|_{\theta=0} = r.$$

Spherical distance between geodesics

For the sphere

$$s_{\theta} = 2R \arcsin\left(\sin\frac{r}{R}\sin\frac{\theta}{2}\right),$$
$$\frac{\partial s_{\theta}}{\partial \theta}\Big|_{\theta=0} = R \sin\frac{r}{R}.$$
Note that for $R \to +\infty$

$$\left. \frac{\partial s_{\theta}}{\partial \theta} \right|_{\theta=0} \sim r,$$

the Euclidean case is recovered.

Surface element

Volume element

Euclidean

 $\mathrm{d}s^2 = \mathrm{d}r^2 + r^2\mathrm{d}\theta^2$

Spherical

$$\mathrm{d}s^2 = \mathrm{d}r^2 + R^2 \sin^2 \frac{r}{R} \mathrm{d}\theta^2$$

Define:

$$\mathrm{d}s^2 = \mathrm{d}r^2 + [f(r)]^2 \mathrm{d}\theta^2$$

Negative curvature, imaginary radius

Define curvature as

$$\kappa := R^{-2}.$$

$$f(r) = \frac{1}{\sqrt{\kappa}} \sin r \sqrt{\kappa}, \qquad \begin{cases} \text{Spherical} & \kappa > 0\\ \text{Euclidean} & \kappa \to 0 \\ ? & \kappa < 0 \end{cases}$$

Note $\kappa < 0$ means R = i|R|, rewrite

$$f(r) = -\frac{i}{\sqrt{-\kappa}} \sin(-ir\sqrt{-\kappa}) \quad i\sin(ix) = \sinh x$$
$$= \frac{1}{\sqrt{-\kappa}} \sinh(r\sqrt{-\kappa})$$

The many faces of curvature

- Intrinsic: seen from within the space
 - Volume growth
 - Parallel postulate
 - Grid distortion
 - Parallel transport
 - Sum of internal angles
- **Extrinsic**: seen from a larger space
 - Principal curvatures
 - Gaussian curvature

- ► Local: at a given point in space
- Global: in a given region of space

Modified from Mysid, CC BY-SA 3.0, via Wikimedia commons

Space growth

Parallel postulate

Grid distortion

Parallel transport

Parallel transport

Triangles

Sum of internal angles

Principal curvatures

Principal curvatures are defined by the minimum and maximum radius.

Gaussian curvature

Gaussian curvature is the determinant of extrinsic curvatures, it coincides with intrinsic curvature.

Hyperbolic space

Definition and history

Hyperbolic space is the space of **constant negative curvature**.

- Developed in the 19th century by Gauss, Lobachevsky, and Bolyai.
- Is the geometry of special relativity.
- ► Inspired art by Maurits C. Escher

Hilbert's theorem

Bad piece of news:

There is no way to completely represent the hyperbolic space of dimension nin the Euclidean space of dimension n + 1.

The best we can do is the tractoid.

This is why we have to resort to models.

Leonid 2, CC BY-SA 3.0, via Wikimedia commons

Models of hyperbolic geometry

- Hyperboloid or Lorentz model
- Poincaré disc/ball
- ► Beltrami–Klein model
- Poincaré half-plane
- ▶ ...

All equivalent, but depending on the operation some may be more convenient. A *conformal* model is one that preserves angles.

Minkowski space

Euclidean space \mathbb{R}^n with an additional dimension

$$x = (x_0, x_1, \dots, x_n) = (x_0, \vec{x})$$

 x_0 and \vec{x} are called *time* and *space* components

Introduce the pseudo-scalar product

$$\langle x, y \rangle_{\mathcal{L}} = x_0 y_0 - (x_1 y_1 + \dots + x_n y_n)$$

= $x_0 y_0 - \vec{x} \cdot \vec{y}.$

This is not positive definite!

Example:
$$x^2 = 0$$
 when $x_0^2 = x_1^2 + x_2^2$

Lorentz hyperboloid model

The Lorentz hyperboloid model is the manifold

$$x^2 = x_0^2 - \vec{x}^2 = -1/\kappa$$
 with $x_0 > 0$,

so x_0 is fully determined by \vec{x}

$$x_0 = \sqrt{\vec{x}^2 - 1/\kappa}.$$

An appropriate definition of distance is needed.

Ag2gaeh, CC BY-SA 4.0, via Wikimedia commons

Distance in the sphere

For the *n*-dimensional sphere within \mathbb{R}^{n+1} , choose a meridian from the north pole

$$p_r = \begin{pmatrix} R\cos(r/R)\\ \hat{v}R\sin(r/R) \end{pmatrix}, \quad p_0 = \begin{pmatrix} R\\ \vec{0} \end{pmatrix}.$$

The distance r can be rewritten with the scalar product

$$\langle p_0, p_r \rangle = R^2 \cos \frac{r}{R},$$

 $r = R \arccos \frac{\langle p(0), p(r) \rangle}{R^2}.$

Distance in the Lorentz hyperboloid

For the *n*-dimensional sphere within \mathbb{R}^{n+1} , choose a meridian from the north pole

$$p_r = \begin{pmatrix} R\cos(r/R)\\ \hat{v}R\sin(r/R) \end{pmatrix}, \quad p_0 = \begin{pmatrix} R\\ \vec{0} \end{pmatrix}.$$

The distance r can be rewritten with the scalar product

$$\langle p_0, p_r \rangle = R^2 \cos \frac{r}{R},$$

 $r = R \arccos \frac{\langle p(0), p(r) \rangle}{R^2}.$

For the n-dimensional Lorentz hyperboloid in (1, n) Minkowski space

$$p_r = \begin{pmatrix} \frac{1}{\sqrt{-\kappa}} \cosh(r\sqrt{-\kappa}) \\ \frac{\hat{v}}{\sqrt{-\kappa}} \sinh(r\sqrt{-\kappa}) \end{pmatrix}, \ p_0 = \begin{pmatrix} \frac{1}{\sqrt{-\kappa}} \\ \vec{0} \end{pmatrix}.$$

The distance r can be rewritten with the scalar product

$$\langle p_0, p_r \rangle_{\mathcal{L}} = \frac{1}{-\kappa} \cosh(r \sqrt{-\kappa}),$$

 $r = \frac{1}{\sqrt{-\kappa}} \cosh^{-1}(-\kappa \langle p_0, p_r \rangle_{\mathcal{L}}).$

Exponential map

Let $v = (0, \hat{v})$ and note that $\langle p_0, v \rangle_{\mathcal{L}} = 0$, so v is an element of the tangent space. A more general geodesic at a point p_0 in direction v reads

$$p_r = \exp_{p_0}(r, v) = \cosh(r\sqrt{-\kappa})p_0 + \sinh(r\sqrt{-\kappa})v/\sqrt{-\kappa},$$

and is the intersection of a Minkowski hyperplane with the hyperboloid.

This is the exponential map, which lifts points from the tangent space $T_{x(0)} \sim \mathbb{R}^n$ to the hyperboloid of dimension n.

Its inverse, logarithmic map, projects points from the hyperboloid to the tangent space.

The name comes from combining many infinitesimal movements in the same direction.

From Lorentz hyperboloid to Poincaré disk

The **Poincaré model** is a projection of the Lorentz hyperboloid model to the unit disk/ball via the point $(-1/\sqrt{-\kappa}, \vec{0})$, and vice versa.

$$p_{r,\lambda} = \lambda p_r + (1-\lambda) \begin{pmatrix} -1/\sqrt{-\kappa} \\ \vec{0} \end{pmatrix}$$
$$= \frac{1}{\sqrt{-\kappa}} \begin{pmatrix} \lambda \cosh(r\sqrt{-\kappa}) - (1-\lambda) \\ \hat{v}\lambda \sinh(r\sqrt{-\kappa}) \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} 0 \\ q \end{pmatrix},$$

Poincaré disk: algebra

A parametrization then is

$$q = \frac{\hat{v}}{\sqrt{-\kappa}} \frac{\sinh(r\sqrt{-\kappa})}{\cosh(r\sqrt{-\kappa}) - 1} = \frac{\hat{v}}{\sqrt{-\kappa}} \tanh\frac{r\sqrt{-\kappa}}{2},$$

which gives $|q| < \sqrt{-\kappa}$, a disk/ball without shell.

The distance between two points in the Poincaré model is given by

$$d(p,q) = \frac{1}{\sqrt{-\kappa}} \cosh^{-1} \left(1 + \frac{2|p-q|^2}{(1-|p|^2)(1-|q|^2)} \right)$$

Poincaré disk: graphics

Geodesics are arcs of circles that meet the boundary at right angles.

Areas and distances appear smaller at the boundary.

The origin

Is the origin special in the Lorentz hyperboloid and in the Poincaré ball?

Hyperbolic isometries

A hyperbolic translation τ_x moves 0 to x keeping all pairwise distances constant. Other names: Lorentz boost, Möbius transformation, gyrovectorspace addition

Formulas for hyperbolic translations

Lorentz hyperboloid (Lorentz boost)

$$au_x(y) = \Lambda_x y \quad \text{where} \quad \Lambda_x = \begin{pmatrix} x_0 & \vec{x}^T \\ \vec{x} & \sqrt{\mathbb{I} + \vec{x} \vec{x}^T} \end{pmatrix}$$
(1)

Poincaré ball (gyrovectorspace addition)

$$\tau_p(q) = p \oplus q = \frac{(1 - |p|^2)q + (1 + 2p \cdot q + |q|^2)p}{1 + 2p \cdot q + |p|^2|q|^2}$$

Note $p \oplus q \neq q \oplus p$.

Gyrovectorspace calculus

Gyrovectorspace addition:

$$p \oplus q = \frac{(1 - |p|^2)q + (1 + 2p \cdot q + |q|^2)p}{1 + 2p \cdot q + |p|^2|q|^2}$$

Gyrovectorspace scalar product:

$$r \otimes p = p \otimes r = \tanh\left(r \tanh^{-1}|p|\right) \frac{p}{|p|}$$

Geodesic arc from p to q:

$$\lambda(t) = p \oplus ([(-p) \oplus q] \otimes t), \quad t \in [0,1]$$

This is similar to the Euclidean formula $\lambda(t) = p + (q - p)t$.

References I

- Carroll, Sean M. Lecture notes on general relativity. 1997. URL: https://arxiv.org/pdf/gr-qc/9712019.
- Loustau, Brice. Hyperbolic geometry. 2020. URL: https://brice.loustau.eu/ressources/book.pdf.
- Mettes, Pascal et al. "Hyperbolic deep learning in computer vision: A survey". In: International Journal of Computer Vision (2024), pp. 1–25. URL: https://arxiv.org/pdf/2305.06611.
- **I** .Hyperbolic Representation Learning for Computer Vision. URL:

https://sites.google.com/view/hyperbolic-tutorial-eccv22.

Hyperbolic Learning in Action Deep Learning in Hyperbolic Space

Lionetti Simone

Gonzalez-Jimenez Alvaro

Friday 14th February, 2025

Embedding Hierarchies

The trouble with embedding hierarchies

Hierarchies grow exponenitally in depth, Euclidean spaces grows linearly with norm.

Poincaré Embeddings

Nickel and Kiela, Poincaré Embeddings for Learning Hierarchical Representations

Optimizing Poincaré Embeddings

Nodes: $S = \{x_i\}_{i=1}^n$ Parent-child relations: $\mathcal{D} = \{(u, v)\}$ Non-Parent-child relations: $\mathcal{N}(u) = \{v' | (u, v') \notin \mathcal{D}\} \cup \{v\}$

Optimizing Poincaré Embeddings

Nodes: $S = \{x_i\}_{i=1}^n$ Parent-child relations:Non-Parent-child relations: $\mathcal{D} = \{(u, v)\}$ $\mathcal{N}(u) = \{v' | (u, v') \notin \mathcal{D}\} \cup \{v\}$

Hyperbolic representation of nodes: $\Theta = \{\theta_i\}_{i=1}^n$

$$\Theta' \leftarrow \operatorname{argmin} \mathcal{L}(\Theta) \quad \mathsf{s.t.} \forall \theta_i \in \Theta : \|\theta_i\| < 1 \tag{1}$$

Pull parent-child nodes, push others.

$$\mathcal{L}(\Theta) = \sum_{(u,v)\in\mathcal{D}} \log \frac{e^{-d(\mathbf{u},\mathbf{v})}}{\sum_{\mathbf{v}'\in\mathcal{N}(u)} e^{-d(\mathbf{u},\mathbf{v}')}}$$
(2)

$$d(\mathbf{u}, \mathbf{v}) = \operatorname{arcosh}\left(1 + 2\frac{\|\mathbf{u} - \mathbf{v}\|^2}{\left(1 - \|\mathbf{u}\|^2\right)\left(1 - \|\mathbf{v}\|^2\right)}\right)$$

(3)

Optimizing Poincaré Embeddings

$$\theta_{t+1} = \Re_{\theta_t} \left(-\eta_t \nabla_R \mathcal{L} \left(\theta_t \right) \right) \tag{4}$$

Optimize node embeddings with Riemmanian gradient descent.

$$\theta_{t+1} \leftarrow \operatorname{proj}\left(\theta_t - \eta_t \frac{\left(1 - \|\theta_t\|^2\right)^2}{4} \nabla_E\right)$$
(5)

Riemmanian gradient descent = Standard gradient + scaling + projection.

Poincaré Embeddings

					Dimens	ionality		
			5	10	20	50	100	200
tion	Euclidean	Rank MAP	3542.3 0.024	2286.9 0.059	1685.9 0.087	1281.7 0.140	1187.3 0.162	1157.3 0.168
WORDNE Reconstruc	Translational	Rank MAP	205.9 0.517	179.4 0.503	95.3 0.563	92.8 0.566	92.7 0.562	91.0 0.565
	Poincaré	Rank MAP	4.9 0.823	4.02 0.851	3.84 0.855	3.98 0.86	3.9 0.857	3.83 0.87
d.	Euclidean	Rank MAP	3311.1 0.024	2199.5 0.059	952.3 0.176	351.4 0.286	190.7 0.428	81.5 0.490
WORDNE Link Pree	Translational	Rank MAP	65.7 0.545	56.6 0.554	52.1 0.554	47.2 0.56	43.2 0.562	40.4 0.559
	Poincaré	Rank MAP	5.7 0.825	4.3 0.852	4.9 0.861	4.6 0.863	4.6 0.856	4.6 0.855

			Dimensionality												
			Recons	truction		Link Prediction									
		10	20	50	100	10	20	50	100						
ASTROPH	Euclidean	0.376	0.788	0.969	0.989	0.508	0.815	0.946	0.960						
N=18,772; E=198,110	Poincaré	0.703	0.897	0.982	0.990	0.671	0.860	0.977	0.988						
CondMat	Euclidean	0.356	0.860	0.991	0.998	0.308	0.617	0.725	0.736						
N=23,133; E=93,497	Poincaré	0.799	0.963	0.996	0.998	0.539	0.718	0.756	0.758						
GRQC	Euclidean	0.522	0.931	0.994	0.998	0.438	0.584	0.673	0.683						
N=5,242; E=14,496	Poincaré	0.990	0.999	0.999	0.999	0.660	0.691	0.695	0.697						
HEPPH	Euclidean	0.434	0.742	0.937	0.966	0.642	0.749	0.779	0.783						
N=12,008; E=118,521	Poincaré	0.811	0.960	0.994	0.997	0.683	0.743	0.770	0.774						

Improving Poincaré Embeddings

Hyperbolic entailment cones.

Multi-relational Poincaré embeddings. Modelling heterogeneous hierarchies.

Hyperbolic Image Embeddings

Freedor	Dataset										
Encouer	CIFAR10	CIFAR100	CUB	<i>Mini</i> ImageNet							
Inception v3 [49]	0.25	0.23	0.23	0.21							
ResNet34 [14]	0.26	0.25	0.25	0.21							
VGG19 [42]	0.23	0.22	0.23	0.17							

Khrulkov et al., Hyperbolic Image Embeddings

Convolutional Networks with Hyperbolic Embeddings

Guo et al., "Clipped Hyperbolic Classifiers Are Super-Hyperbolic Classifiers"

Zero-Shot Generalization

Hyperbolic Zero-Shot Visual Embedding Learning

If labels are hierarchical, does a hyperbolic embedding eneable zero-shot generalization?

Hyperbolic Zero-Shot Visual Embedding Learning

Liu et al., "Hyperbolic Visual Embedding Learning for Zero-Shot Recognition"

Hyperbolic Zero-Shot Visual Embedding Learning

Data Set	Model	Hierarchical precision@ $k(\%)$									
Data Set	Widdei	1	2 5 10 20 2 5 10 20 5.3 9.5 15.6 21.2 7.0 9.9 15.6 22.0 6.8 12.3 18.5 25.1 15.6 27.5 36.8 44.5 24.3 43.8 58.6 70.3 2.1 3.3 4.9 7.3 2.6 4.4 6.6 9.3 2.6 4.4 7.2 9.7 4.6 8.2 12.5 15.1 12.5 21.4 28.7 37.5 1.5 2.9 4.4 6.5 1.6 2.9 4.4 6.5 2.4 4.2 6.5 9.7 3.8 7.2 10.5 13.9								
	DeViSE	3.2	5.3	9.5	15.6	21.2					
2-hops &	DeViSE*	4.5	7.0	9.9	15.6	22.0					
Their Parents	ConSE	4.2	6.8	12.3	18.5	25.1					
	GCNZ	9.2	15.6	27.5	36.8	44.5					
	Ours	16.6	24.3	43.8	58.6	70.3					
	DeViSE	1.3	2.1	3.3	4.9	7.3					
3-hops &	DeViSE*	1.7	2.6	4.4	6.6	9.3					
Their Parents	ConSE	1.9	2.6	4.4	7.2	9.7					
	GCNZ	2.7	4.6	8.2	12.5	15.1					
	Ours	7.9	12.5	37.5							
	DeViSE	0.9	1.5	2.9	4.4	6.5					
3-hops & Their Parents DeViSE DeViSE* 1.3 1.7 2.1 2.6 3.3 4.9 4.9 Meir Parents DeViSE* 1.7 2.6 4.4 6.6 ConSE 1.9 2.6 4.4 7.2 GCNZ 2.7 4.6 8.2 12. Ours 7.9 12.5 21.4 28. DeViSE 0.9 1.5 2.9 4.4 All DeViSE* 1.0 1.6 2.9 4.4 ConSE 1.5 2.4 4.2 6.5	4.4	6.5									
All	ConSE	1.5	2.4	4.2	6.5	9.7					
	GCNZ	2.2	3.8	7.2	10.5	13.9					
	Ours	5.1	6.9	12.9	16.5	19.3					

If prior knowledge is a hierarchy then use hyperbolic geometry for zero-shot learning.

 DeViSE:
 teddy, orangutan, valley, langur, cliff

 GCN2:
 phalanger, red squirrel, kangaroo, lemur, tree wallaby

 Ours:
 red squirrel, tree squirrel*, squirrel, kangaroo, phalanger

 DeViSE:
 rugby ball, soccer ball, golf ball, basketball, cricket

 GCN2:
 volleyball, basketball, golf ball, punching bag, rugby ball

 Ours:
 volleyball*, basketball, rugby ball, soccer ball

DeVISE: bullet train, freight car, school bus, police van, minibus GCNZ: mail train, express, passenger train, cargo ship, shuttle bus Ours: passenger train, railroad train*, bus, school bus, trolleybus

Liu et al., "Hyperbolic Visual Embedding Learning for Zero-Shot Recognition"

Hyperbolic Image-Text Representations

Desai et al., "Hyperbolic Image-text Representations"

Entailment Cones

Desai et al., "Hyperbolic Image-text Representations"

MERU

			ALL							
MERU	CLIP	MERU	CLIP	MERU	CLIP	MERU	CLIP			
avocado toast	avocado toast	brooklyn bridge	photo of	taj mahal	taj mahal	sydney opera	sydney opera			
healthy	delicious		brooklyn bridge,		through an arch	house	house			
breakfast			new york	monument	travel	opera house	opera house			
delicious	\downarrow	new york city	new york city	architecture	inspiration	holiday	gift			
homemade	\downarrow	city	new york	travel	\downarrow	day	beauty			
fresh	\downarrow	outdoors	Ļ	day	Ļ	[ROOT]	[ROOT]			
[ROOT]	[ROOT]	day	\downarrow	[ROOT]	[ROOT]					
		[ROOT]	[ROOT]							

Desai et al., "Hyperbolic Image-text Representations"

MERU

Table 2. Zero-shot image classification. We train MERU and CLIP models with varying parameter counts and transfer them *zero-shot* to 20 image classification datasets. Best performance in every column is highlighted in green. Hyperbolic representations from MERU match or outperform CLIP on 13 out of the first 16 datasets. On the last four datasets (gray columns), both MERU and CLIP have *near-random* performance, as concepts in these datasets are not adequately covered in the training data.

		ImageNet	Food-101	CIFAR-10	CIFAR-100	CUB	SUN397	Cars	Aircraft	DTD	Pets	Caltech-101	Flowers	STL-10	EuroSAT	RESISC45	Country211	MNIST	CLEVR	PCAM	SST2
ViT	CLIP	34.3	74.5	60.1	24.4	33.8	27.5	11.3	1.4	15.0	73.7	63.9	47.0	88.2	18.6	31.4	5.2	10.0	19.4	50.2	50.1
S/16	MERU	34.4	75.6	52.0	24.7	33.7	28.0	11.1	1.3	16.2	72.3	64.1	49.2	91.1	30.4	32.0	4.8	7.5	14.5	51.0	50.0
ViT	CLIP	37.9	78.9	65.5	33.4	33.3	29.8	14.4	1.4	17.0	77.9	68.5	50.9	92.2	25.6	31.0	5.8	10.4	14.3	54.1	51.5
B/16	MERU	37.5	78.8	67.7	32.7	34.8	30.9	14.0	1.7	17.2	79.3	68.5	52.1	92.5	30.2	34.5	5.6	13.0	13.5	49.8	49.9
ViT	CLIP	38.4	80.3	72.0	36.4	36.3	32.0	18.0	1.1	16.5	78.8	68.3	48.6	93.7	26.7	35.4	6.1	14.8	13.6	51.2	51.1
L/16	MERU	38.8	80.6	68.7	35.5	37.2	33.0	16.6	2.2	17.2	80.0	67.5	52.1	93.7	28.1	36.5	6.2	11.8	13.1	52.7	49.3

Desai et al., "Hyperbolic Image-text Representations"

Compositional Entailment Learning

An image is not only described by a sentence but is itself a composition of multiple object boxes, each with their own textual description

Pal et al., "Compositional Entailment Learning for Hyperbolic Vision-Language Models"

Compositional Entailment Learning

Pal et al., "Compositional Entailment Learning for Hyperbolic Vision-Language Models"

Compositional Entailment Learning

Pal et al., "Compositional Entailment Learning for Hyperbolic Vision-Language Models"

Robustness and Uncertainty

Hyperbolic Segmentation

GhadimiAtigh et al., Hyperbolic Image Segmentation

Uncertainty and boundary information for free

GhadimiAtigh et al., Hyperbolic Image Segmentation

How to exploit robustness properties?

- Learn in-distribution representations promoting low variations and high separation.
- Hyperbolic geometry offers more space than Euclidean!

Gonzalez-Jimenez et al., Hyperbolic Metric Learning for Visual Outlier Detection

Hyperbolic Outlier Detection

Gonzalez-Jimenez et al., Hyperbolic Metric Learning for Visual Outlier Detection

Fully Hyperbolic Networks

Extend Hyperbolic Space for the entire network

Mapping back and forth between hyperbolic and Euclidean manifolds.

Move Everything to Hyperbolic Space

The current methods depend on the tangent space for several operations and the frequent back and forth mapping is both expensive and prone to a loss of data.

Hyperbolic Network ++

Poincaré Ball

$$y = \exp_0^c \left(W \log_0^c(x) \right) \oplus_c b \tag{6}$$

Hyperbolic Neural Networks++

$$y = \mathcal{F}^{c}(x; Z, r) = w \left(1 + \sqrt{1 + c \|w\|^2} \right)^{-1}$$
(7)

Shimizu, Mukuta, and Harada, Hyperbolic Neural Networks++

Poincare ResNet

- Extend Linear Layer from Hyperbolic Neural Network++ for Convolutions.
- Poincare midpoint batch normalization for faster and equally effective alternative to Frechet Mean.
- Poincare Resnets are (i) more robust to out-of-distribution samples, (ii) more robust to adversarial attacks and (iii) complementary to Euclidean networks.

Weaknesses

Gradients Vanishing

Guo et al., "Clipped Hyperbolic Classifiers Are Super-Hyperbolic Classifiers"

Numerical Instability

- It will sometimes lead to catastrophic NaN problems, encountering unrepresentable values in floating point arithmetic.
- Under the 64 bit arithmetic system, the Poincare ball has a relatively larger capacity than the Lorentz model for correctly representing points.
- Lorentz model is superior to the Poincare ball from the perspective of optimization.

Mishne et al., "The Numerical Stability of Hyperbolic Representation Learning"

References I

- Desai, Karan et al. "Hyperbolic Image-text Representations". In: Proceedings of the 40th International Conference on Machine Learning. PMLR, July 2023, pp. 7694–7731. (Visited on 02/05/2025).
- GhadimiAtigh, Mina et al. *Hyperbolic Image Segmentation*. Mar. 2022. DOI: 10.48550/arXiv.2203.05898. (Visited on 02/05/2025).
- Gonzalez-Jimenez, Alvaro et al. Hyperbolic Metric Learning for Visual Outlier Detection. Sept. 2024. DOI: 10.48550/arXiv.2403.15260. (Visited on 02/05/2025).
- Guo, Yunhui et al. "Clipped Hyperbolic Classifiers Are Super-Hyperbolic Classifiers". In: *Computer Vision and Pattern Recognition* (2021). DOI: 10.1109/CVPR52688.2022.00010.
- Khrulkov, Valentin et al. Hyperbolic Image Embeddings. Mar. 2020. DOI: 10.48550/arXiv.1904.02239. (Visited on 02/05/2025).

References II

- Liu, Shaoteng et al. "Hyperbolic Visual Embedding Learning for Zero-Shot Recognition". In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 2020, pp. 9270–9278. DOI: 10.1109/CVPR42600.2020.00929. (Visited on 02/11/2025).
- Mishne, Gal et al. "The Numerical Stability of Hyperbolic Representation Learning". In: Proceedings of the 40th International Conference on Machine Learning. Ed. by Andreas Krause et al. Vol. 202. Proceedings of Machine Learning Research. PMLR, 23-29 Jul 2023, pp. 24925-24949. URL: https://proceedings.mlr.press/v202/mishne23a.html.
- Nickel, Maximilian and Douwe Kiela. Poincaré Embeddings for Learning Hierarchical Representations. May 2017. DOI: 10.48550/arXiv.1705.08039. (Visited on 02/26/2024).

References III

- Pal, Avik et al. "Compositional Entailment Learning for Hyperbolic Vision-Language Models". In: The Thirteenth International Conference on Learning Representations. 2025. URL: https://openreview.net/forum?id=3i13Gev2hV.
- Shimizu, Ryohei, Yusuke Mukuta, and Tatsuya Harada. *Hyperbolic Neural Networks++*. Mar. 2021. DOI: 10.48550/arXiv.2006.08210. (Visited on 11/20/2024).
- Spengler, Max van, Erwin Berkhout, and Pascal Mettes. *Poincaré ResNet*. Dec. 2023. DOI: 10.48550/arXiv.2303.14027. (Visited on 02/05/2025).

Hyperbolic Learning in Action

Tools for Hyperbolic Learning

Lionetti Simone

Gonzalez-Jimenez Alvaro

Friday 14th February, 2025

Geomstats

- An extensive library for differential geometry, supporting a wide range of manifolds and operations.
- Offers thorough documentation and tutorials, which help users get started quickly.
- Well-maintained and actively developed with frequent updates.
- Lacks in-depth focus on hyperbolic space, leading to missing important features and models.

Geoopt

- ▶ Started as *just for fun* paper implementation and grow to a Python Package. ¹
- Support various hyperbolic models and operations.
- ► The most widely used library in literature for manifold-based optimization.
- Lacks active maintenance, with outdated implementations for key operations such as sinh, cosh, etc.
- ► Performance issues and steep learning curve for beginners.

¹https://www.youtube.com/watch?v=6VZ0Gk4QMME

- A recent library with a strong focus on hyperbolic space.
- Provides support for hyperbolic layers and operations, designed like PyTorch (hypll.nn, hypll.optim).
- User-friendly for creating fully hyperbolic networks.
- Only support Poincaré Ball, other models will be implemented.

Hypll Overview

```
from hypll.tensors import TangentTensor
 11
  from hvpll.optim import RiemannianAdam
  from hypll, manifolds, poincare ball import Curvature, PoincareBall
 3
  from models import hyperbolic_model
 5
 6
 7
  manifold = PoincareBall(c=Curvature(value=0.1, requires_grad=True))
   model = hyperbolic_model(manifold=manifold)
 8
 9
10
   optimizer = RiemannianAdam(model.parameters(), lr=0.001)
   criterion = nn.CrossEntropyLoss()
11
12
13
   for epoch in range(100):
14
       running_loss = 0.0
15
       for i. data in enumerate(trainloader. 0):
16
           inputs. labels = data[0].to(device). data[1].to(device)
17
18
           tangents = TangentTensor(data=inputs, man_dim=1, manifold=manifold)
19
           manifold_inputs = manifold.expmap(tangents)
20
21
           optimizer.zero_grad()
22
           outputs = model(manifold inputs)
23
           loss = criterion(outputs.tensor, labels)
24
           loss backward()
25
           optimizer.step()
26
```

Library	Advantages	Disadvantages
Geomstats	Extensive support for differential geometry Well maintained and documented	Not focus for hyperbolic learning Missing operations and features
Geoopt	Support many models (Lorentz, Hyperboloid, Klein, etc.) Rich in hyperbolic operations Widely used in hyperbolic papers	Slow performance (outdated code) Not maintained Difficult for beginners
Hypll	Follows PyTorch style Support hyperbolic layers for Fully Hyperbolic Networks User-friendly	Only Poincare model is supported

The code is at

https://github.com/Digital-Dermatology/hyperbolic-learning-tutorial-code

Hyperbolic Learning in Action

Conclusions & Learning

Lionetti Simone

Gonzalez-Jimenez Alvaro

Friday 14th February, 2025

Discussion

Learnings from the practical session

Tell us what you have discovered or learned from the practical session!

Performance comparison

CIFAR-10 Classification Performance

Recap

Why should we care about Hyperbolic Learning

Visual Hierarchies

Semantic Hierarchies

Why should we care about Hyperbolic Learning

Zero-Shot Learning

Robustness

Future Potential

- ► Fully hyperbolic CNNs, Transformers, etc.
- Stable learning on any and all hyperbolic models.
- ► Fast forward and backward computation.
- Adjust curvature to data and problem.
- What model is suitable for data and problem?
- ► Large-scale hyperbolic learning.
Thank you

https://forms.gle/KdhQPt6e9NwKUkfGA