> 0% Universitdt Hochschul
X\ Basel HSLU Luzern " ©
Hyperbolic Learning in Action

Non-Euclidean Geometry

Lionetti Gonzalez-Jimenez
Simone Alvaro

Friday 14th February, 2025

1/42

/



Hyperbolic Learning in Action

Website and material:

https://digital-dermatology.github.io/hyperbolic-learning-tutorial

2/42


https://digital-dermatology.github.io/hyperbolic-learning-tutorial

Motivation



Euclidean geometry

Humans perceive the world as three-dimensional Euclidean space.

Width, height, and depth
are natural concepts.
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Jorge Stolfi, Public domain,
via Wikimedia commons

a2
a2
ass

am2

am3

Qin
QA2n
a3n

Amn

Computer linear algebra
assumes Euclidean space.

Most Machine Learning is
based on Euclidean space.



https://commons.wikimedia.org/wiki/File:Coord_system_CA_0.svg

Spherical geometry

Some problems are naturally treated on the sphere.

Earth surface Celestial sphere Fisheye camera

U.S. Government, Public domain, ChristianReady, CC BY-SA 4.0, Spike, CC BY-SA 4.0,
via Wikimedia commons via Wikimedia commons via Wikimedia commons

More subtly, cosine distance is often used in embedding spaces.
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https://commons.wikimedia.org/wiki/File:Globe_Atlantic.svg
https://creativecommons.org/licenses/by-sa/4.0
https://commons.wikimedia.org/wiki/File:Celestial_Sphere_-_Full_no_figures.png
https://creativecommons.org/licenses/by-sa/4.0
https://commons.wikimedia.org/wiki/File:Pisa_Baptistery_interior_fisheye_view_01.jpg

Hyperbolic geometry

Hyperbolic geometry ...but common in data!
is less common in nature...

Toby Hudson, CC BY-SA 3.0, [Schumann et al 2021]
via Wikimedia commons CC BY-SA 4.0
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https://creativecommons.org/licenses/by-sa/3.0
https://commons.wikimedia.org/wiki/File:Folded_Coral_Flynn_Reef.jpg
https://arxiv.org/abs/2105.02317
https://creativecommons.org/licenses/by-sa/4.0

Hierarchies

Tree structures with splitting at each level: This is often the structure of:

v

Classification categories

v

Images and their parts
Words and their relations

v

v

Tree graphs, by definition

Ubiquitous in Machine Learning!

The number of leaves grows exponentially
with the number of levels.



Program for 45 minutes

1. Motivation

2. Curvature
2.1 Construction
2.2 Properties

3. Hyperbolic geometry

3.1 Lorentz hyperboloid model
3.2 Poincaré ball model
3.3 Isometries

Inspired by the tutorial on

Hyperbolic Representation Learning at ECCV 2022
by Mettes, Ghadimi Athig, Keller-Ressel, Gu, Yeung

£2 A &97+ et L;i ;
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https://hyperbolic-representation-learning.readthedocs.io/en/latest/

Backgrounds

What is your background?




Curvature
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Axioms of Euclidean geometry

Euclid's Elements (roughly 300 BC):

1.

. Line segments may be indefinitely extended.

Unique line segment through two distinct points.
2
3. Unique circle of given center and radius.
4.
5

. Given a line and a point not on it,

All right angles are congruent.

there is a unique line through the given point
that does not intersect the given line.
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Axioms of Euclidean geometry

Euclid's Elements (roughly 300 BC):

1.

. Line segments may be indefinitely extended.

Unique line segment through two distinct points.

2
3. Unique circle of given center and radius.
4.
5

. Given a line and a point not on it,

All right angles are congruent.

there is a unique line through the given point
that does not intersect the given line.

Concepts:

1.

AR

Geodesic segments
Geodesic lines
Distance
Orthogonality
(Flatness)
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The sphere

ARSI .

The shortest path is in the plane with the two points and the center.
Great circles are geodesics, i.e. straight lines.

Same distance curves are “parallels”.

Orthogonal plane great circles.

All great circles intersect in two points!

SE S
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Euclidean distance between geodesics

An important characteristic of a geometry is the distance between geodesics crossing
at a given angle 0, at a distance r from their intersection.

For the Euclidean plane

Sp = 2rsin 3

Os|  _,
00 gy
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Spherical distance between geodesics

For the sphere

0
sp = 2R arcsin <sin % sin 2> ,

.
= Rsin—.
SIHR

054
98 |y_g
Note that for R — +o0

9
00

N/]’”

0=0

the Euclidean case is recovered.
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Surface element

Volume element

» Euclidean
ds® = dr?® + r*d¢?
» Spherical
ds? = dr® + R? sin %deﬁ

Define:
ds? = dr? 4 [f(r)]?de?
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Negative curvature, imaginary radius

Define curvature as

k= R72.
Spherical k>0
flr)= 1 sinrv/k Euclidean & — 0
=R , .

? k<0

Note k < 0 means R = i|R|, rewrite

flr) =~

V=r
\/1_7 sinh (7‘ —/ﬁ})

sin(—irv/—k) isin(iz) = sinhz

/
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The many faces of curvature

» Local: at a given point in space
» Intrinsic: seen from within the space » Global: in a given region of space
> Volume growth
Parallel postulate
Grid distortion
Parallel transport
» Sum of internal angles

v vy

» Extrinsic: seen from a larger space

» Principal curvatures
» Gaussian curvature Modified from Mysid, CC BY-SA 3.0,

via Wikimedia commons
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https://creativecommons.org/licenses/by-sa/3.0
https://commons.wikimedia.org/wiki/File:Spacetime_lattice_analogy.svg

Space growth

<,

k=0
polynomial

S,q = Q,r" !

<]

k>0

bounded

St = O |Rsin %]H

k<0

exponential

n—1
,
S =Q,||R|sinh —
2= Rlsinh



Parallel postulate

k=0

(one parallel)

---------- .“-.-..'“-.
k>0 k<0
(no parallel) (many parallels)
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Grid distortion

%
1z

\¥
7

k=0 k>0

(flat) (barrel)

At
7%

(pincushion)
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Parallel transport

k=0 k>0 k<0
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Parallel transport

k=0 k>0 k<0
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Triangles

Sum of internal angles

\

[ 2

(>

e
-

k=0 k>0

D =T D >T

(/

-

k<0

Ziai<ﬂ'

K — —0OQ

2 =0
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Principal curvatures

Principal curvatures are defined by the minimum and maximum radius.
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Gaussian curvature

Gaussian curvature is the determinant of extrinsic curvatures,
it coincides with intrinsic curvature.

SUOWIWIOD BIPSWINIAA B!
‘0 VS-Ag DD ‘yeesg3y

k>0 k=0
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https://commons.wikimedia.org/wiki/File:Parabol-el-zy-hy-s.svg
https://creativecommons.org/licenses/by-sa/4.0

Hyperbolic space
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Definition and history

Hyperbolic space is the space of constant negative curvature.

» Developed in the 19th century
by Gauss, Lobachevsky, and Bolyai.

> Is the geometry of special relativity.
> Inspired art by Maurits C. Escher
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Hilbert's theorem

Bad piece of news:

There is no way to completely represent
the hyperbolic space of dimension n
in the Euclidean space of dimension n + 1.

The best we can do is the tractoid.

This is why we have to resort to models.

Leonid 2, CC BY-SA 3.0,
via Wikimedia commons
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https://creativecommons.org/licenses/by-sa/3.0
https://commons.wikimedia.org/wiki/File:PseudoSphere.svg

Models of hyperbolic geometry

v

Hyperboloid or Lorentz model

v

Poincaré disc/ball

Beltrami—Klein model

v

v

Poincaré half-plane

All equivalent, but depending on the operation some may be more convenient.
A conformal model is one that preserves angles.
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Minkowski space

Euclidean space R™ with an additional dimension
x = (zg,T1,...,2n) = (x0, T)
2o and & are called time and space components

Introduce the pseudo-scalar product

(z,y)c = woyo — (T1y1 + - - + TnYn)
= zoYo — T - .

This is not positive definite!

C 2 2 2 4 2
Example: 2° = 0 when 2§ = 27 + 23

kTime
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Lorentz hyperboloid model

The Lorentz hyperboloid model is the
manifold

2 _ 2 =2 _

¥ =ux5—3°=-1/k with x>0,

so xg is fully determined by ¥

l‘ozx/i'q—l/lﬁ.

An appropriate definition of distance is
needed.

Ag2gaeh, CC BY-SA 4.0,
via Wikimedia commons
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https://creativecommons.org/licenses/by-sa/4.0
https://commons.wikimedia.org/wiki/File:Hyperboloid-2s.svg

Distance in the sphere

For the n-dimensional sphere within R+,
choose a meridian from the north pole

o (S8 (9

The distance r can be rewritten with the
scalar product

<p05p’r‘> - R2 COS %7

{p(0), p(r))

r = Rarccos 72

Fo
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Distance in the Lorentz hyperboloid

For the n-dimensional Lorentz hyperboloid

_ . . . . n+1
For the n-dimensional sphere within R®™*, in (1,n) Minkowski space

choose a meridian from the north pole
1

G B ) B GRS T )

V—r
The distance r can be rewritten with the The distance r can be rewritten with the
scalar product scalar product
( ) = R? cos r L
Do, Pr R? <p07p7«>£ = —7/{/ COSh(T _H),

(p(0), p(r))

_ 1
r = Rarccos R2 . r= \/_7” COSh_l(—’f@oaprﬁ)-
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Exponential map

Let v = (0,0) and note that (pg,v)z = 0, so v is an element of the tangent space.
A more general geodesic at a point pg in direction v reads

pr = exp,, (r,v) = cosh(r —/@)po + Sinh(r —/-i) v/V—k,
and is the intersection of a Minkowski hyperplane with the hyperboloid.

This is the exponential map, which lifts points from the tangent space T, ) ~ R" to
the hyperboloid of dimension n.

Its inverse, logarithmic map, projects points from the hyperboloid to the tangent space.

The name comes from combining many infinitesimal movements in the same direction.
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From Lorentz hyperboloid to Poincaré disk

The Poincaré model is a projection of the Lorentz
hyperboloid model to the unit disk/ball via the
point (—1/4/—k,0), and vice versa.

pra=Apr + (1= 2) <_1/8/__ﬁ>

- = e )% (o)
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Poincaré disk: algebra

A parametrization then is

0 sinh(r —/1) 0 . r—K
q_\/—IiCOSh(T —n)—l_\/—/{ 2

which gives |g| < /—k, a disk/ball without shell.

The distance between two points in the Poincaré model is given by

1 2lp — ¢|?
cosh <1 TP |q\2>>'

dp.0) = =

36/42



Poincaré disk: graphics

Areas and distances
appear smaller at the boundary.

Geodesics are arcs of circles that
meet the boundary at right angles.
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The origin

Is the origin special
in the Lorentz hyperboloid
and in the Poincaré ball?
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Hyperbolic isometries

A hyperbolic translation 7, moves 0 to x keeping all pairwise distances constant.
Other names: Lorentz boost, Mobius transformation, gyrovectorspace addition
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Formulas for hyperbolic translations

Lorentz hyperboloid (Lorentz boost)

=T

X X
Tm(y) =Azy where A, = (; m)

Poincaré ball (gyrovectorspace addition)

(1—1pPg+ 1 +2p-q+|q*)p

() =pDq= 1+2p-q+|pPlqP

Note p ® q # q & p.
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Gyrovectorspace calculus

Gyrovectorspace addition:

(1= p)g+ (1 +2p-q+|q*)p
1+2p-q+|p|*ql?

pDqg=
Gyrovectorspace scalar product:
r®p=p®r = tanh(rtanh™! |p\)%
Geodesic arc from p to ¢:
At)=p@((-p)®q®t), te][0,1]

This is similar to the Euclidean formula A(t) = p + (¢ — p)t.
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Embedding Hierarchies



The trouble with embedding hierarchies

Hierarchies grow exponenitally in depth, Euclidean spaces grows linearly with norm.
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Poincaré Embeddings

TN

) \
},ﬁmw
o

SN

0dd-Toed Ungulate

4
yid

(a) Intermediate embedding after 20 epochs (b) Embedding after convergence

Nickel and Kiela, Poincaré Embeddings for Learning Hierarchical Representations 4/37



Optimizing Poincaré Embeddings

Nodes: Parent-child relations:

S ={z}, D = {(u,v)}

Non-Parent-child relations:

N(u) = {v'| (u,v") ¢ D} U{v}



Optimizing Poincaré Embeddings
Nodes: Parent-child relations: Non-Parent-child relations:
S =A{zi}ii, D = {(u,v)} N(u) = {v'| (u,v") ¢ D} U {v}
Hyperbolic representation of nodes: © = {6;}!" ;
O’ + argmin £(0) s.tV0, €O :6;]| <1 (1)
Pull parent-child nodes, push others.

—d(u,v)

e
e—d(u,v) (2)

L(O) = Z log

(u,v)€D ZV/GN(U)

d(u,v) = arcosh (1 +2 [ —v]* ) (3)

(1= ) (1= IvI?)
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Optimizing Poincaré Embeddings

Or+1 = Ro, (—mVRL (01)) (4)

Optimize node embeddings with Riemmanian gradient descent.

— 2 2
. (1= leul?)

1 Ve (5)

9t+1 — proj

Riemmanian gradient descent = Standard gradient + scaling + projection.



Poincaré Embeddings

Dimensionality
5 10 20 50 100 200 -
& TEndidean Rank 35423 22869 16859 12817 1187.3 11573 . : .
o MAP 0024 0059 0087 0140 0.62 0.168 Reconstruction LinkiPrediction
g
ZE franclational REK 2059 1794 953 928 97 910 o 2 0 10 10 220 50 100
23 MAP 0517 0503 0563 0566 0562  0.565 ASTROPH Euclidean 0376 0788 0969 0989 0508 0815 0946 0960
$E ok BEEEE 402 38 33 39 38 Newsympaosio Poincaré 0703 0897 0982 0990 0671 0860 0977 0.988
& Poincaré MAP 0823 0851 0855 086 0857 087 CONDMAT  Euclidean 0356 0.860 0991 0998 0308 0617 0725 0736
o BT 310 s L 1907 BLs Nesisposer  Poincaré 0799 0963 0996 0998 0539 0718 0756 0.758
. Eudlidean MAP 004 005 o176 0286 o043 WP GrRQC Euclidean 0522 0931 0994 0998 0438 0584 0673 0683
E T i : : : i : Nesab-l4e06  Poincaré 0990 0999 0999 0999 0.660 0691 0695 0.697
. Rank 657 566 521 472 432 404 -
3~  Translational HEPPH Euclidean 0434 0742 0937 0966 0642 0749 0779 0783
] MAP 0545 0554 0554 056 0562 0559 NenoosE-iiss Poincaré 0811 0960 0994 0997 0.683 0743 0770 0.774
B2 poincar Rank 57 43 49 4.6 4.6 4.6
MAP 0825 0852 0861 0863 0856 0.855




Improving Poincaré Embeddings

Non-hierarchical relation

682 derivationally
- derivationally related form  (§§ EEes
- sister term

Hypernym relation
- partof

Hyperbolic entailment Multi-relational Poincaré
cones. embeddings.

) .
B(nr)

Modelling heterogeneous
hierarchies.
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Hyperbolic Image Embeddings

Encoder Dataset

CIFAR10 CIFAR100 CUB MinilmageNet
Inception v3 [49] 0.25 0.23 0.23 0.21
ResNet34 [14] 0.26 0.25 0.25 0.21
VGGI19 [42] 0.23 0.22 0.23 0.17

Khrulkov et al., Hyperbolic Image Embeddings 9/37



Convolutional Networks with Hyperbolic Embeddings

Euclidean Neural Network
Hyperbolic Space

Poincare
Hyperplane

Euclidean
?. Embedding

= XEm) Expo(XF) m

Hyperbolic
Embedding

Guo et al., “Clipped Hyperbolic Classifiers Are Super-Hyperbolic Classifiers” 10/37



Zero-Shot Generalization
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Hyperbolic Zero-Shot Visual Embedding Learning

If labels are hierarchical, does a hyperbolic embedding eneable zero-shot generalization?

Squirrel

i

Arctic Squirrel Rock Squirrel Black Squirrel Red Squirrel

12/37



Hyperbolic Zero-Shot Visual Embedding Learning

Euclidean space

Hyperbolic space

Image

Feature extractor feature

|
% Deep ConvNet| . | '
|
|
\

Projected
image
feature

Word embedding

. : Poincaré
WordNet Hierarchy ——] embedding
Large text corpus : Poincaré
from wikipedia R GloVe

Transformed (
image /
feature

ord embedding Poincaré distance

—_—

"

[

Concatenation

Liu et al., “Hyperbolic Visual Embedding Learning for Zero-Shot Recognition”
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Hyperbolic Zero-Shot Visual Embedding Learning

If prior knowledge is a hierarchy then use hyperbolic geometry for zero-shot learning.

Hierarchical precision@k(%)

Data Set Model I ‘ 3 3 | 10 | 20
DeViSE 32 | 53 95 | 156 | 21.2

2-hops & DeViSE* | 4.5 7.0 99 | 156 | 22.0
Their Parents ConSE 42 6.8 | 123 | 185 | 25.1
GCNZ 92 | 156 | 275 | 36.8 | 445
Ours 16.6 | 24.3 | 43.8 | 58.6 | 70.3

DeViSE 13 2.1 33 4.9 73

3-hops & DeViSE* | 1.7 26 | 44 6.6 9.3
Their Parents ConSE 1.9 2.6 44 7.2 9.7
GCNZ 2.7 4.6 82 | 125 | 151
Ours 79 | 125 | 214 | 28.7 | 375

DeViSE | 0.9 1.5 29 | 44 6.5

All DeViSE* | 1.0 1.6 29 | 44 6.5
ConSE 1.5 24 | 42 6.5 9.7
GCNZ 22 3.8 72 | 105 | 139
Ours 5.1 69 | 129 | 165 | 19.3

®  DeViSE:
GCNZ:

Ours:

DeViSE:
GCNZ:
Ours:

: teddy, orangutan, valley, langur, cliff

phalanger, red squirrel, kangaroo, lemur, tree wallaby

red squirrel, tree squirrel*, squirrel, kangaroo, phalanger

rugby ball, soccer ball, golf ball, basketball, cricket
volleyball, basketball, golf ball, punching bag, rugby ball

volleyball, ball*, basketball, rugby ball, soccer ball

bullet train, freight car, school bus, police van, minibus
mail train, express, passenger train, cargo ship, shuttle bus

passenger train, railroad train*, bus, school bus, trolleybus

Liu et al., “Hyperbolic Visual Embedding Learning for Zero-Shot Recognition”
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Hyperbolic Image-Text Representations

Contrastive Loss
(cosine similarity)

L2 normalize L2 normalize

|

Linear

Projection Projection

Image
Encoder

I

Images

CLIP

Desai et al., “Hyperbolic Image-text Representations”

Contrastive Loss

(neg. Lorentzian distance)
F + Entailment Loss W

expmg expmy,
U’img Olixt
Linear Linear
Projection Projection
Image Text
Encoder MERU Encoder
Images Text

15/37



Entailment Cones

loss = ext(X,y) — aper(x)

Desai et al., “Hyperbolic Image-text Representations”
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MERU CLIP MERU CLIP MERU CIP MERU CLIP

avocado toast avocado toast  brooklyn bridge  photo of taj mahal taj mahal sydney opera  sydney opera
healthy delicious brooklyn bridge, through an arch house house
breakfast new york monument travel opera house  opera house
delicious 1 new york city _new york city architecture inspiration holiday gift
homemade 1 city new york travel ! day beauty
fresh 1 outdoors i day 1 [ROOT] [ROOT]
[ROOT] [ROOT] day 1 [ROOT] [ROOT]
[ROOT] [ROOT]

Desai et al., “Hyperbolic Image-text Representations” 17/37



MERU

Table 2. Zero-shot image classification. We train MERU and CLIP models with varying parameter counts and transfer them zero-shot to
20 image classification datasets. Best performance in every column is highlighted in green. Hyperbolic representations from MERU match

or outperform CLIP on 13 out of the first 16 datasets. On the last four datasets (gray ¢

performance, as concepts in these datasets are not adequately covered in the training data.

olumns), both MERU and CLIP have near-random

3 3z e § = § = g E

zZ = y y 2N t= £ 2 o X U » H &

E £ S8 08 38 2 ¢ %8 23 = 5 2 8385 8 & g
ViT CLIP 343 745 60.1 244 338 275 11.3 1.4 150 73.7 639 47.0 882 18.6 314 52 100 194 502 50.1
S/16 MERU 34.4 75.6 52.0 24.7 33.7 28.0 11.1 1.3 16.2 72.3 64.1 49.2 91.1 30.4 32.0 48 7.5 145 51.0 50.0
ViT CLIP 379 789 655 33.4 333 298 144 1.4 17.0 779 68.5 509 922 25.6 31.0 5.8 104 143 54.1 515
B/16 MERU 37.5 78.8 67.7 32.7 34.8 309 14.0 1.7 17.2 79.3 68.5 52.1 92.5 30.2 34.5 5.6 13.0 13.5 49.8 49.9
ViT CLIP 384 80.3 72.0 36.4 363 32.0 18.0 1.1 16.5 78.8 68.3 48.6 93.7 26.7 354 6.1 14.8 13.6 512 51.1
L/16 MERU 38.8 80.6 68.7 35.5 37.2 33.0 16.6 22 17.2 80.0 67.5 52.1 93.7 28.1 '36.5 6.2 11.8 13.1 52.7 49.3

Desai et al., “Hyperbolic Image-text Representations”

18/37



Compositional Entailment Learning

An image is not only described by a sentence but is itself a composition of multiple
object boxes, each with their own textual description

- - - Entailment
Toox 4
o | |
Image ga
Local box, I** \

i By = —— Text, T
- Nl[:s‘:rca;r:f?i;:n:rden table 22 Text of
I used to cook I g LS Local box, T

Pal et al., “Compositional Entailment Learning for Hyperbolic Vision-Language Models"
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Compositional Entailment Learning

top-down view
of hyperboloid

Image box (I")

1 . \

Text box (Tp™)

\

Mineral water with|
a glass carafe on a garden table

Text (T,)

Surppequiy oSew] [ny || Surppequug Xog efew]

| Full Text Embedding "N Text Box Embedding ’m

hCC learning - -
Image (L)

Pal et al., “Compositional Entailment Learning for Hyperbolic Vision-Language Models" 20/37



Compositional Entailment Learning

=N
n o

% of samples.
=
o

o
n

J 10
5
£ 05

N mages
[ Image boxes
mm Texts

I Text boxes

0.0+
059 060 061 062 063 064 065 066
I

Images
Image boxes
Texts

Text boxes

* 0o 0 0

©

Images
Image boxes
Texts

Text boxes

Pal et al., “Compositional Entailment Learning for Hyperbolic Vision-Language Models"
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Robustness and Uncertainty

22/37



Hyperbolic Segmentation

Segmentation

Segmentation

02 04 06 08
Confidence Map

(a) Prediction uncertainty for free (b) Boundary information for free

GhadimiAtigh et al., Hyperbolic Image Segmentation 23/37



Uncertainty and boundary information for free

Hyperbolic Segmentation  Hyperbolic Uncertainty Bayesian Uncertainty
1 pass

1000 passes

o

0.00 0.25 0.50 0.75 1.00 -2 -1

GhadimiAtigh et al., Hyperbolic Image Segmentation 24/37



How to exploit robustness properties?

» Learn in-distribution representations
promoting low variations and high
separation.

» Hyperbolic geometry offers more space
than Euclidean!

Gonzalez-Jimenez et al., Hyperbolic Metric Learning for Visual Outlier Detection 25/37



Hyperbolic Outlier Detection

Frequency

W CIFAR-10 .. | == cIFAR-10
20000 7 Textures 9 W Places365
=
=]
10000 g
=3
Score Score
B CIFAR-10 .. | == crraR-10
20000 4 mmm SVHN g mem MNIST
El
10000 - E g

Score

FPR@95

100 A

80

60

40 1

20 1

—— With Sampling
—— W/o Sampling
— NPOS

7 é%% 7

pe? ©

=

16

3 2
Dimensions

Gonzalez-Jimenez et al., Hyperbolic Metric Learning for Visual Outlier Detection
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Fully Hyperbolic Networks

27/37



Extend Hyperbolic Space for the entire network

Mapping back and forth between hyperbolic and Euclidean manifolds.

28/37



Move Everything to Hyperbolic Space

The current methods depend on the tangent space for several operations and the
frequent back and forth mapping is both expensive and prone to a loss of data.

29/37



Hyperbolic Network ++

Poincaré Ball

y = expq (W logg(z)) G b (6)

—lbll

Hyperbolic Neural Networks—++

y=Fa2.r) =w (14 VIt cul?)
(7)

Shimizu, Mukuta, and Harada, Hyperbolic Neural Networks++ 30/37



Poincare ResNet

Poincaré convolution 2D

Poincaré batch normalization 2D

G(z) l ReLUp

Poincaré convolution 2D

T
identity

Poincaré batch normalization 2D

z®.G(z)

Spengler, Berkhout, and Mettes, Poincaré ResNet

» Extend Linear Layer from Hyperbolic
Neural Network++ for Convolutions.

» Poincare midpoint batch normalization
for faster and equally effective
alternative to Frechet Mean.

» Poincare Resnets are (i) more robust
to out-of-distribution samples, (ii)
more robust to adversarial attacks and
(iii) complementary to Euclidean
networks.
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Weaknesses
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Numerical Instability

> It will sometimes lead to catastrophic NaN problems, encountering
unrepresentable values in floating point arithmetic.

> Under the 64 bit arithmetic system, the Poincare ball has a relatively larger
capacity than the Lorentz model for correctly representing points.

» Lorentz model is superior to the Poincare ball from the perspective of
optimization.

Mishne et al., “The Numerical Stability of Hyperbolic Representation Learning” 34/37
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Geomstats

» An extensive library for differential
geometry, supporting a wide range of
manifolds and operations.

» Offers thorough documentation and
tutorials, which help users get started

auickly, Geomstats
» Well-maintained and actively
developed with frequent updates.

» Lacks in-depth focus on hyperbolic
space, leading to missing important
features and models.



Geoopt

» Started as just for fun paper implementation and grow to a Python Package. !
» Support various hyperbolic models and operations.
» The most widely used library in literature for manifold-based optimization.

» Lacks active maintenance, with outdated implementations for key operations such
as sinh, cosh, etc.

» Performance issues and steep learning curve for beginners.

https://www.youtube.com /watch?v=6VZ0Gk4QMME 3/7



HypLL

v

A recent library with a strong focus on hyperbolic space.

v

Provides support for hyperbolic layers and operations, designed like PyTorch
(hypll.nn, hypll.optim).

v

User-friendly for creating fully hyperbolic networks.

v

Only support Poincaré Ball, other models will be implemented.



Hypll Overview

1| from hypll.tensors import TangentTensor

2| from hypll.optim import RiemannianAdam

3| from hypll.manifolds.poincare_ball import Curvature, PoincareBall
4| from models import hyperbolic_model

5

6

7| manifold = PoincareBall (c=Curvature(value=0.1, requires_grad=True))
8| model = hyperbolic_model(manifold=manifold)

9

10| optimizer = RiemannianAdam(model.parameters(), 1r=0.001)

11| criterion = nn.CrossEntropyLoss ()

12

13| for epoch in range (100):

14 running_loss = 0.0

15 for i, data in enumerate(trainloader, 0):

16 inputs, labels = data[0].to(device), datal[1].to(device)
17

18 tangents = TangentTensor (data=inputs, man_dim=1, manifold=manifold)
19 manifold_inputs = manifold.expmap(tangents)

20

21 optimizer.zero_grad()

22 outputs = model(manifold_inputs)

23 loss = criterion(outputs.tensor, labels)

24 loss.backward ()

25 optimizer.step ()

26 .




Library

Advantages

Disadvantages

Extensive support for differential geometry

Not focus for hyperbolic learning

Geomstats Well maintained and documented Missing operations and features
Support many models (Lorentz, Hyperboloid, Klein, etc.) Slow performance (outdated code)
Geoopt Rich in hyperbolic operations Not maintained
Widely used in hyperbolic papers Difficult for beginners
Follows PyTorch style Only Poincare model is supported
Hypll Support hyperbolic layers for Fully Hyperbolic Networks

User-friendly




Practical Session

The code is at

https://github.com/Digital-Dermatology/hyperbolic-learning-tutorial-code



https://github.com/Digital-Dermatology/hyperbolic-learning-tutorial-code
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Discussion



Learnings from the practical session

Tell us what you have discovered or learned from the practical session!




Performance comparison

Accuracy

CIFAR-10 Classification Performance
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Euclidean, epoch 100
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Last hyperbolic, epoch 0
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Last hyperbolic, epoch 1
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Last hyperbolic, epoch 100
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Fully hyperbolic, epoch 0
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Fully hyperbolic, epoch 1
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Fully hyperbolic, epoch 10
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Fully hyperbolic, epoch 100
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Recap
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Why should we care about Hyperbolic Learning

Squirrel

Ground Squirrel Flying Squirrel Tree Squirrel

Black Squirrel Red Squirrel

Semantic Hierarchies
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Why should we care about Hyperbolic Learning

Hyperbolic Segmentation  Hyperbolic Uncertainty Bayesian Uncertainty
1 pass 1000 passes

Euclidean space  Hyperbolic space

Feature extractor 1298

feature
|
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Large text corpus ] Poincaré D
from wikipedia i | GloVe

Zero-Shot Learning
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Future Potential

v

Fully hyperbolic CNNs, Transformers, etc.

v

Stable learning on any and all hyperbolic models.

v

Fast forward and backward computation.

v

Adjust curvature to data and problem.

v

What model is suitable for data and problem?

v

Large-scale hyperbolic learning.

20/21



Thank you

https://forms.gle/KdhQPt6e9INwKUKFGA



